gti

Forecourt Storage and Compression Options

DOE Annual Merit Review and Peer Evaluation

Arlington, VA 16 May 2006

William Liss
Gas Technology Institute

PDP 19

Overview

- > Timeline
 - Phase 1: June 2005 to February 2006
 - Phase 2: TBD
- > Budget
 - Phase 1: \$150 K (\$100 K limit through Feb '06)
 - Phase 2: \$818 K

- > Barriers addressed
 - 3.2.4.2 F: Hydrogen
 Delivery Infrastructure
 Storage Costs
 - 3.2.4.2 H: Storage
 Tank Materials and
 Costs
- > Partners
 - Phase 1: None
 - Phase 2: TBD

2

PDP 19

Objectives

Examine technical feasibility and cost implications of a wide variety of forecourt compression and storage configurations

PDP 19

3

Approach

- > Update station sizing software tool
 - Allow for a wider variety of station configurations
- > Equipment cost data collection
- > Perform economic analyses
- > Examine additional tradeoffs
 - Cryo pump vs. compressor
 - Under ground vs. above ground
 - Advanced composites vs. steel

PDP 19

Station Configuration: Cascade Fill

- > Uneven demand from smaller vehicles
- > Sporadic demand from larger vehicles

5

Station Configuration: Buffer Fill

- > Large vehicles fueling continuously
- > Most fueling directly from compressor(s)

Station Configuration: Time Fill

- > Vehicles return to property for several hours
- > Total fill cycle will usually requires 8+ hours

Other Potential Configurations

Hydrogen Station Sizing: CASCADE H2

- Simulate compressed gaseous fuel station operation
 - Facilitates quick system sizing and tradeoff analysis
 - System compression and storage sizing
 - Matching station fuel supply to demand
 - Models peak fuel demand periods
 - Helps minimize capital costs and maximize utilization

NATURAL GAS & HYDROGEN FUELING STATION SIZING

Developed by GTI & available through:
InterEnergy Software
www.interenergysoftware.com

PDP 19

CASCADE H2 PRO Enhancements

- > Improved system flow representation
- > Multiple, simultaneous vehicle fueling
- > User selectable maximum dispenser flow rate
- > Multiple vehicle types and flexible scheduling
- > User definable compressor characteristics
 - Power consumption, volumetric efficiency
- Compressor electric power and demand calculation
 - Time of day and seasonal rates
- > Station life cycle cost analysis
- > Improved charting and reporting features

CASCADE H2 PRO Inputs

- > Variable configuration parameters
 - Vehicles (type and quantity), storage capacities and pressures, dispensers, peak flow
- > Variable cost elements
 - Peak and off peak electricity (seasonally), time dependent costs (per year), usage dependent costs (per kg)
 - Economic life, cost of capital, taxes, inflation, depreciation methods

CASCADE H2 Pro Results

> Performance

- Cascade pressure, capacity
- Compressor output, power, electric demand
- Station and dispenser load profiles
- Vehicles fully served (or not), maximum fill pressure, filling times

> Economic

- Net present value
- Payback (simple and discounted)
- Rate of return solver

Cascade Pressure

Cascade Pressure One Hour

Compressor PowerOne Hour

Sample Analyses

- Different demand profiles normalized to 1200 kg per day
 - Gasoline data courtesy of ConocoPhillips
 - > Truck stop, interstate station, large residential station
 - Compressed natural gas (CNG) station

Station Demand Profile

- Sasoline: 5000 to 15000 gal/day
 - Average station is about 3300 gal/day
- > CNG: 700 gal/day

Gasoline data courtesy ConocoPhillips

H2 Station Demand Profile

 Residential, CNG, and H2A profiles normalized to 1200 kg/day

H2 Station Sizing

- > Used CASCADE to determine required compressor output for various cascade capacities for each load profile
 - Single bank cascade (10 ft³ water volume)
 - Three bank cascades
 - > 30 to 360 ft³ water volume
- > All simulations used 3-2-1 capacity ratios
 - Low bank (first used by vehicle) the largest
 - Marginal performance improvement relative to 1-1-1 ratio

Compressor-Storage Relation Compressor Size, Utilization, and Energy

Compressor-Storage Costs

H2A Assumptions: \$4500/(kg/hr), \$818/kg

Vehicle Fueling Times

Resid Profiles

Vehicle Fueling Times

Resid Profiles, Ambient Temperature Effects

Vehicle Fueling Times

	CNG	Res	CNG		Resid		
	10s	10s	60	120	30	60	120
Mean	243	264	136	144	173	149	145
σ	34	28	22	24	42	19	20

	CNG						
	60	60: 10F	60: 100F				
Mean	136	134	148				
σ	22	21	23				

70 MPa Considerations

- Diminishing returns for vehicle storage
 - 35 to 70 MPa yields
 67% increase for gas properties
 - Same outer volume constraint: 25 to 31%
- Increased specific costs of fueling equipment
- Difficulties in limiting vehicle tank temperature during fueling

Future Work

- > Complete configuration analyses
- > Complete cost data collection
- > Perform economic analyses
- > Examine additional tradeoffs
 - Cryo pump vs. compressor
 - Under ground vs. above ground
 - Advanced composites vs. steel
- > Potential inclusion of impacts of 70 MPa fueling scenarios

Summary

- > CASCADE H2 PRO is designed to be a simple, yet powerful, tool for:
 - Assisting designers in analyzing complex station equipment interactions
 - Providing valuable performance and economics assessments
- Version 1.0 is currently undergoing testing and review
 - Expected to be available for purchase in the second half of 2006
- Initial analyses indicate some H2A assumptions may need revision

Contact Information

William Liss
Director, Hydrogen Energy Systems
Gas Technology Institute
1700 South Mount Prospect Road
Des Plaines, IL 60018
(847) 768-0753
william.liss@gastechnology.org

www.gastechnology.org/hydrogen

